

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 2087

Corrigendum

Corrigendum to 'Design, Synthesis and Binding Affinity of 3'-Fluoro Analogues of C1-IB-MECA as Adenosine A₃ Receptor Ligands' [Bioorg. Med. Chem. Lett. 13 (2003) 817][†]

Moo Hong Lim,^a Hea Ok Kim,^b Hyung Ryong Moon,^c Seung Jin Lee,^c Moon Woo Chun,^{a,*} Zhan-Guo Gao,^d Neli Melman,^d Kenneth A. Jacobson,^d Joong Hyup Kim^e and Lak Shin Jeong^{c,*}

^aCollege of Pharmacy, Seoul National University, Seoul 151-742, South Korea
 ^bDivision of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea
 ^cLaboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
 ^dMolecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and
 Digestive and Kidney Disease, National Institutes of Health, Bethesda, MA 20892, USA
 ^eKorea Institute of Science and Technology, Seoul 136-791, South Korea

The authors regret that there were errors contained in the above article. The abstract of the article should read:

Several 3'-fluoro analogues, **1a**, **1b**, and **1c** of selective and potent adenosine A₃ receptor agonist, Cl-IB-MECA were synthesized from D-xylose via highly regioselective opening of *lyxo*-epoxides, **8a** and **8b** with fluoride anion. Compared to the high binding affinity of Cl-IB-MECA to the A₃ adenosine receptor, the corresponding 3'-fluoro derivative showed remarkably decreased binding affinity, indicating that 3'-hydroxyl group acts as hydrogen bonding donor, not hydrogen bonding acceptor like fluorine atom in binding to the A₃ adenosine receptor.

Also, on page 820 of the article, the last sentence in the first paragraph should read:

These biological results indicate that 3'-hydroxyl group plays an essential role in binding to A_3 and A_{2A} adenosine receptors as a hydrogen bonding donor, especially to A_{2A} receptor, but has little effect on binding to A_1 receptor.

The penultimate sentence of the second paragraph on page 820 should read:

From this study, we have found a very important and essential role of 3'-hydroxyl group as hydrogen bonding donor, not a hydrogen bonding acceptor like the fluorine atom in binding to adenosine receptors.

[†]PII of original article: S0960-894X(03)00027-1

^{*}Corresponding author. Tel.: +82-2-3277-3466; fax: +82-2-3277-2851; e-mail: lakjeong@ewha.ac.kr